新聞及香港科大故事
2024

新聞
科大成功研發四大AI醫學大模型 革新醫療保健領域
香港科技大學(科大)成功研發四大嶄新的AI醫學大模型,推進醫療保健領域的發展。這批AI醫學大模型旨在協助全科及專科醫生診症,能為多達 30 種癌症及疾病提供診斷和預後評估,部分模型的準確度更可與擁有 5 年或以上經驗的專業醫療人員媲美。
是次研究透過科大的人工智能運算設施進行,在充足的運算力下,這些AI醫學系統得以由大量數據建構而成,結合團隊創新的機器學習訓練策略,性能表現比其他現有模型更為優秀。領導研究的科大計算機科學及工程學系助理教授陳浩教授指出,單單是其中一個針對病理學而設的 AI 基礎模型,便曾處理逾1.6億張醫學圖像,涵蓋32癌症類別。
四大模型包括:
• MOME(乳癌診斷)為首個以大模型方式分析多參數磁力共振(MRI)影像的AI模型,針對乳癌診斷而設。乳癌是本港女性最常見的癌症之一,此模型能助醫生分析病人的乳房MRI,輔助他們快速區分乳房腫瘤屬良性或惡性,從而盡量避免病人進行不必要的病理穿刺化驗。此外,此AI模型更能預測患者對化療的反應,為病人制定適合的治療方案。系統的準確度能與具有5年或以上經驗的放射科醫生相媲美,對為病人開創非入侵性及個人化的治療管理有莫大幫助。

新聞
科大識別新基因 為治療脊髓損傷帶來突破
由香港科技大學(科大)領導、有關神經科學領域的最新研究,為治療中樞神經系統(CNS)損傷帶來新希望。研究人員透過識別一種調節多種類型CNS軸突再生的新基因,為修復受損的神經網絡邁出重要一步,相關研究結果已於《美國國家科學院院刊》*上發表。
成年哺乳類動物的CNS缺乏自我修復能力,是治療脊髓損傷的主要困難,令這些損傷可能導致如癱瘓等永久性殘疾。早於2019年,科大生命科學部劉凱教授帶領的團隊在《神經元(Neuron)》期刊上發表的一篇研究,便曾揭示,lipin1基因透過神經元脂質代謝的分子機制,於調節CNS軸突再生中扮演着至關重要的角色。然而,科學界仍須進一步研究軸突再生的複雜分子機制,了解如何利用這些機制治療脊髓損傷。
Lipin1是一種參與脂質代謝的酶,降低視網膜神經節細胞中的lipin1水平可以指導神經元從合成存儲脂質轉向膜組分磷脂,進而促進神經修復。其中,有些脂質還可以參與訊號傳遞,包括磷脂酸(PA)和溶血磷脂酸(LPA),可以活化重要的細胞通路,包括mTOR通路,對細胞生長和存活十分重要。
是次研究中,劉凱教授帶領的團隊設計了一種專門針對lipin1 mRNA的新型shRNA,並將其封裝在AAV病毒載體中,借助AAV遞送至神經元,能夠將lipin1 的水平降低63%。研究發現,降低神經元中的lipin1水平會增加PA和LPA的含量,從而活化mTOR和另一種訊息分子STAT3。這些變化顯著促進了神經再生,揭示了lipin1-PA/LPA-mTOR相關的回饋迴路在損傷後阻止神經再生的過程中,扮演着關鍵角色。

新聞
科大團隊揭示小膠質細胞在脊髓損傷後防止軸突退化中的關鍵作用
香港科技大學(科大)的工程研究人員和生物學家攜手展開跨學科研究,成功揭示了一種脊髓神經損傷的保護機制,為開發治療方案帶來曙光,有望造福全球逾千萬患者。
脊髓損傷可造成嚴重後果,例如終身癱瘓,但科學界至今尚未全面了解它的機理,因此未能找到有效的治療方法。長期以來,由於缺乏適當的活體成像技術,科學家無法精確地觀察研究脊髓內未受干擾的細胞生物過程。
為了克服這一困難,科大工學院電子及計算機工程學系瞿佳男教授與理學院生命科學部劉凱教授組成了跨學科團隊。他們結合多模態顯微成像技術和光學清除技術,成功實現微創活體成像,並由此發現小膠質細胞在脊髓軸突損傷後,會發揮一種特殊功能,並有效阻止軸突退化。
小膠質細胞是中樞神經系統裏最為主要的長駐免疫細胞。它們對大腦發育、穩定體內環境和神經系統疾病均有重要影響。科學界近年的研究顯示,無論在神經新生、突觸可塑性或神經退化等過程中,小膠質細胞與神經元之間都有重要的相互作用。
劉凱教授介紹說:「這項研究採用了瞿教授實驗室所開發的先進活體多模態顯微成像技術和光學清除技術,在國際上首次展示了自然生理條件下脊髓中膠質細胞與節點的相互作用。」
他續指:「在單一脊髓軸突損傷的急性階段,我們發現小膠質細胞原來對神經具有關鍵的保護功效。研究結果也解釋了小膠質細胞與軸突之間的通訊機制,為開發有效治療策略提供了新的靶點。」
團隊證實了在脊髓中,小膠質細胞能與髓鞘軸突的郎氏結(nodes of Ranvier)建立直接接觸,並在軸突損傷後,表現出顯著的神經保護包裹行為。這種保護機制依賴於P2Y12受體的功能,突顯出神經元與膠質細胞之間一種新的相互作用,能夠防止急性軸突退化擴散至節點之外。
新聞
科大引入全港最大的浸沒式液冷卻系統
隨著AI研究的算力需求和電力用量不斷攀升,香港科技大學(科大)為實現可持續發展,率先於校內科研運算設施引進全港最大規模的浸沒式液冷卻系統,有效降低超過80%的冷卻耗電量之餘,亦為電腦提供了一個更理想的低溫操作環境,提升其運算性能。
科研工作,特別是分析大數據及執行複雜算法等,需要高效能的運算設備(HPC)。然而,這類伺服器的耗電量高,並會產生大量熱力,阻礙發揮運算效能。
作為AI研究的領航者,科大近日成為本港首間引入浸沒式液冷卻技術的大學,以解決此問題。大學首階段安裝的八個浸沒式冷卻水箱,可容納約280台中央處理器(CPU)和圖形處理器(GPU),而大學預計於2026年落成、樓高八層的高性能數據中心,亦將採用液冷技術。隨著運算能力的提升,原本耗時數日的數據分析工作,現可縮短至數小時內完成。這將有利大學從事更多包括疫苗開發、個人化醫學、癌症基因組學、天體物理學模型構建以及材料科學等需要高效大數據分析的研究工作。

新聞
Less is More: Saving Manpower on Traffic Control While Improving Road Efficiency(只供英文版本)
HKUST Dean of Engineering Prof. Hong K. LO and his team have developed an award-winning smart traffic control plan to mitigate the notorious congestion in Kwun Tong District, Hong Kong. And they have a broader vision to share in this story.

新聞
科大歡迎深海一號攜蛟龍號首次訪港
在國家自然資源部大洋事務管理局(大洋局)的全力支持下,香港科技大學(科大)今天為中國科研考察船「深海一號」和「蛟龍號」首次訪港舉行歡迎儀式,慶祝「蛟龍號」載人潛水器於西太平洋完成首個由國家支持的國際深海科研考察航次。這個由科大參與領導的「數字化深海典型生境」大科學計劃,有多國科學家參與,旨在了解該海域的深海典型生態、物種多樣性及礦產資源,為聯合國「海洋科學促進可持續發展十年計劃」(海洋十年) 大科學計劃之一。
多名內地及香港官員、立法會議員、中小學生代表與不同界別人士,今早齊集尖沙咀海運碼頭, 迎接「深海一號」和「蛟龍號」抵港。香港特區政府政務司副司長卓永興、全國人大常委兼立法會議員李慧琼、科大校長葉玉如教授、中國銀行(香港)副總裁兼風險總監徐海峰、多名特區政府官員及立法會議員,與一眾來自內地的嘉賓,包括中國大洋事務管理局局長鄔長斌、副局長唐冬梅、國家深海基地管理中心的高級官員,一同出席由科大安排的歡迎儀式,並登船參觀及聽取科研人員匯報科研考察成果。
香港特區政府政務司副司長卓永興代表香港熱烈歡迎深海一號攜蛟龍號首次訪港,他說:「在香港特區各界積極準備迎接新中國成立75周年之際,這一次訪問不僅標誌著國家在載人深潛科考技術的重大進步,也充分體現了中央政府對香港海洋科研發展及生態保育的關心和支持。我希望香港社會各界好好把握是次機會,深入了解海洋科學的發展。我亦希望是次活動能夠啟發更多香港年青人投身於深海研究,及積極參與國際深海大科學計劃,為實踐海洋命運共同體、構建美好的地球家園貢獻力量。」

新聞
科大研發新型工藝技術 有效簡化多孔陶瓷材料製作過程
香港科技大學(科大)工學院的團隊研發出一種新型工藝技術,可克服傳統積層製造技術(即3D打印技術)的局限,令製造具有複雜三維構型的多孔陶瓷材料更簡易快捷,有望革新多種陶瓷材料的設計與加工技術,並廣泛應用於能源、電子和生物醫學等多個領域的產品上,例如機械人、太陽能電池、傳感器、電池電極和殺菌設備等。
多孔陶瓷是一種應用廣泛的陶瓷材料,性能穩定、具耐沖蝕性、使用壽命長。為研究有效製造這種物料的方法,科大機械及航空航天工程學系副教授楊徵保帶領團隊採用「表面張力輔助兩步法」(STATS)設計了一種加工策略,僅需兩個步驟,包括利用積層製造技術製備有機骨架,以建立基本構型,然後再把所需成分的前驅體溶液注入該骨架中,便可製造出多孔陶瓷。
這種方法最大的挑戰在於如何有效控制液體的幾何形狀。為了達致預期效果,團隊借助了一種在大自然四處可找到的現象——表面張力。由於表面張力可將流體聚集並固定在骨架中,研究人員遂利用這一特性,把前驅體溶液收集於多孔骨架內,最終成功控制液體的幾何形狀,並製造出高精度的多孔陶瓷。
針對由單元格和單元列構成的骨架,研究團隊進一步從理論和實驗兩方面探討了它們的幾何參數,以指導不同排列組合的三維流體界面創建。經過烘乾處理和高溫燒結後,團隊製備出各種複雜構型的多孔陶瓷。這種工藝將成分匹配從結構成型分離出來,通過可編程製造,能夠生成不同單元尺寸、幾何形狀、相對密度、三維結構和組成成分的多孔陶瓷。該STATS方法不僅能夠製備剛玉(Al2O3)等結構陶瓷,還可用於製備二氧化鈦(TiO2)、鐵酸鉍(BiFeO3)、鈦酸鋇(BaTiO3)等各種功能陶瓷產品。
為了驗證新工藝的優越性,團隊選擇了多孔壓電陶瓷作為研究對象,測試它的壓電性能。結果顯示,由於原始漿料中的有機成分顯著減少,這種STATS製造工藝能有效減少陶瓷中的微孔,同時提高局部緻密性。對於整體呈多孔而局部緻密的壓電陶瓷,其優勢尤為顯著,即使在整體孔隙率非常高(> 90%)的情況下,仍能達到相對較高的壓電常數d33(~ 200 pC N-1)。