新闻及香港科大故事
2025

新闻
破解硼杂环:科大化学家发现硼杂环新合成方法
硼杂环化合物是重要的结构支架,近年在催化剂、合成化学、材料科学和药物开发等领域的应用日益广泛。然而,目前的研究主要集中在三元、五元及六元硼杂环上,对四元硼杂环的探索仍然非常有限。由香港科技大学(科大)化学系全杨健教授和林振阳教授领导的研究团队,与香港中文大学吕海荣教授合作,在发展高效的四元硼杂环合成方法上取得了突破性进展,令以往难以获得的硼杂环亦得以轻易合成,预期将能实现更多实际应用。
硼杂环化合物作为重要的结构基元,在药物化学与功能材料领域展现出独特的应用价值。其中,五元和六元硼杂环体系已在生物活性分子与光电材料中得到广泛应用。尽管四元硼杂环具有显著的环张力,预期能带来丰富的反应性,但由于缺乏高效且通用的合成方法,长久以来限制了对四元硼杂环性质和应用的研究。
此次研究发现了全新的硼杂环合成路径,其关键在于研究团队成功解锁了硼碳双自由基(BCDR)化学。通过光促进的能量转移催化策略形成碳硼双自由基中间体。这项研究的重要突破是首次在四元硼杂环中成功实现了稳定性和反应性的有效平衡,使以往难以获得的其他硼杂环得以轻易合成,这些硼杂环有望在硼药物和分子功能材料等领域获得应用。
全教授补充:“更重要的是,应力性硼杂环的反应与稳定性平衡的概念和策略,不仅促进了硼杂环合成砌块的发展,更将好奇心驱动的研究转向以应用为导向的研究,从而吸引更多来自不同领域的研究人员。”
这项研究已于2025年4月发表于《自然化学(Nature Chemistry)》期刊。论文第一作者是科大化学系博士后研究员王欣谋博士,博士生张沛琪则进行了 DFT 计算;论文共同通讯作者为全教授、林教授和吕教授。

新闻
科大团队开发新模型 提升山泥倾泻预测准确度
香港科技大学(科大)工学院研究团队成功研发了一种革命性的计算框架,深化了科学界对土壤、沙粒和药物粉末等颗粒材料动力学的理解。此突破性模型能透过综合分析水、空气及粒子间的相互物理作用,准确预测山泥倾泻,改善农业灌溉及石油抽取系统,并有助提升食物和药物的製造流程。
预测颗粒材料动力的挑战
固体颗粒材料(如:土壤、沙子,以及製药和食品生产中使用的粉末)的流动,是支配许多自然环境与工业过程的基本机制。理解这些颗粒与周边流体(如水、空气)的互动关係,对预测土壤崩塌或流体渗漏等状况至关重要。然而,现存模型在捕捉这些相互作用,尤其是当这些物质处于「不完全饱和状态」,因而牵涉到毛细吸力、黏滞力等複杂的计算因素在内时,要精准预测这些状况极为困难。
PUA-DEM革新颗粒模型范式
为应对这些挑战,科大土木及环境工程学系的赵吉东教授及其团队研发了「孔隙单元体 – 离散元模型」(简称PUA-DEM模型)。有别于传统模型多採用过度简化的单向流固耦合分析(如仅考虑流体对固体的单向影响等),PUA-DEM模型能综合计算颗粒、空气和水之间的物理交互动态,透过多向耦合分析,精准捕捉固体及流体的移动,并能准确模拟颗粒在不同饱和状态 (从完全湿透至完全乾燥的情况)下,压力释放程度的变化。
基于基础物理原理,这首创模型能精准预测流体和固体在交互作用下各种複杂状况,在岩土工程、环境科学与工业製造等领域,均有巨大的应用潜力。
颗粒模型应用广泛
研究团队正寻求与政府及业界合作,期望应用此技术以助解决现实生活的不同挑战。当中包括开发山泥倾泻早期预警系统; 透过模拟根土保水能力的交互作用以完善洒水灌溉策略;以及透过多方流体预测系统以协助改进现时石油採集以及碳封存工序的效率等。除此以外,新技术亦有望革新药物製造,透过更精准控制粉末的加工程序,使药物生产更安全和更高效,并有助确保药物剂量的一致性,从而提升疗效及改善病人预后。在食品製造方面,新技术可望革新咖啡、糖,以及婴儿配方奶粉等颗粒生产工序,改善其质地、溶解度以及保存稳定性等,亦有效减少耗能与浪费。

新闻
科大成立冯诺依曼研究院 领航人工智能创新
为响应香港特别行政区政府全力发展人工智能(AI)为关键产业的策略,香港科技大学(科大)今日正式成立冯诺依曼研究院(Von Neumann Institute),整合具身智能、生成式AI及先进超级运算等技术,推动跨学科协作,促进新质生产力,以迎接AI世代。
冯诺依曼研究院以著名电脑科学家、人称「电脑之父」的约翰·冯·诺依曼命名,其开创的「冯诺伊曼架构」,对当今的AI演算法影响深远。研究院将由计算机视觉与AI领域知名专家、科大计算机科学及工程学系讲座教授兼独角兽企业思谋集团创始人贾佳亚教授领导,凭借科大在AI领域的坚实基础,以及贾教授广泛的产业网络,研究院将致力于构建完整的AI生态系统,加强产学研合作,并通过中学拓展计划,培育新一代AI人才。
Vonnex机械人展现AI突破
出席研究院开幕礼的主礼嘉宾包括香港特别行政区财政司司长陈茂波、匈牙利驻香港总领事柯泰安 (Dr. Pál Kertész) 、香港投资管理有限公司(港投公司)行政总裁陈家齐,科大校董会主席沈向洋教授、校长叶玉如教授以及首席副校长郭毅可教授等。其中,贾教授团队研发的AI机械人Vonnex更参与揭幕仪式,展现了其流畅的操作与多模态感知系统,并能同时处理视觉、触觉和声音等资讯,彰显机械人技术的潜能。
财政司司长陈茂波在致开幕辞中表示:「特区政府相信人工智能蕴藏巨大的潜力。我们的目标是通过『AI+』策略,将AI融入各行各业。冯诺依曼研究院汇聚了科大、思谋集团及港投公司等多方人才与资源,集合卓越的学术水平、坚实的基础研究、丰富的业界经验,更拥有庞大的企业与投资者网络。我们期望研究院能成为开拓AI应用场景与推动研究成果商业化的平台,为香港不断发展的创科生态系统以及人工智能领域的进步作出贡献。」

新闻
HKUST Community Benefits from Award-Winning AIoT Project to Estimate Queue Status and Occupancy(只供英文版本)
HKUST’s Engineering Commons, opened in 2013, has been the School of Engineering’s “family room” that enhances interaction of the engineering community and enables the display of top-notch research of its faculty members. Located at a key intersection of the campus, the Engineering Commons was renovated in 2024 after being used for more than a decade. As the Commons officially reopened in October 2024, it features an array of new research applications that are most relevant to campus life, including AIoT sensing research led by Prof. Gary CHAN Shueng-Han of the Department of Computer Science and Engineering.

新闻
从「层压板」获取灵感:科大与理大研究团队首创「层压」界面结构 推进钙钛矿光伏技术
香港科技大学(科大)与香港理工大学(理大)的合作研究团队首创一种层压形貌的界面微结构,可进一步提高反式钙钛矿太阳能电池器件的稳定性和光电转换效率。
钙钛矿太阳能电池因高效率丶低成本以及器件美学方面的独特优势,在电网电力丶便携电源和太空光伏等应用场景均展示出取代传统硅电池的巨大潜力。钙钛矿太阳能电池的基本器件结构分为正式与反式两种。其中反式器件因各层电子材料比正式器件较为稳定,从而展现出更好的应用前景。尽管如此,反式器件仍然存在较多的界面科学问题,特别是富勒烯基电子传输层与钙钛矿表面形成的界面处缺陷富集,是影响器件性能与稳定性的重要因素。
科大化学及生物工程学系副教授与能源研究院副院长周圆圆教授团队致力于从独特的结构视角开展基础科学导向的钙钛矿光电器件研究。透过与理大应用物理学系的蔡嵩骅教授团队的合作,团队发现通过在钙钛矿薄膜表面空间均匀地形成一种「分子钝化层-富勒烯衍生物层-二维钙钛矿层」的类「三合板」的层压结构,可有效降低界面缺陷密度、改善能级匹配度,从而提高了钙钛矿电池的光电转换效率,并大幅度提高界面在湿热环境以及光照运行下的耐久性。
论文的共同第一作者、科大博士后研究员郭鹏飞博士说:「我们将复合材料概念导入到光电器件的界面设计,这使得新型界面中每层产生协同效应,带来了传统界面工程所无法实现的效果。」
该研究工作的主要通讯作者周圆圆教授补充道:「钙钛矿是一种软晶格材料。我们可在这类材料里创造传统材料难以实现的微结构特征。我们正在尽一切努力来理解这些微结构在纳米乃至原子尺度的形成与作用机制,开展基础理解导向的器件创新。」

新闻
磁学新时代:科大最新研究为自旋电子学和谷电子学应用带来新方向
近年来国际科研界广泛关注交错磁体(Altermagnets),研究其如何不依赖净磁矩或自旋轨道耦合作用(SOC)而实现自旋劈裂。香港科技大学(科大)物理系刘军伟教授团队与其他研究团队,最近在《Nature Physics》*上发表最新研究成果,揭示了首次在实验中测量到具有二维层状特性的室温交错磁体,并验证了刘教授于2021年发表于《Nature Communications》的理论预测。长久以来,如何实现以及进一步控制自旋极化态,从而存储和调控信息,是自旋电子学的一个重要问题。传统方式是通过自旋与轨道、自旋与局域磁矩的相互作用,实现自旋极化,前者对应着自旋轨道耦合效应产生的自旋劈裂,如Rashba-Dresselhaus效应,而后者对应着铁磁中的Zeeman劈裂。刘教授亦与多个国际研究团队相继在理论上提出了一种新的自旋劈裂理论——在旋转、镜面等晶体对称性联系不同磁子格的反铁磁中,会产生来自于反铁磁交换相互作用导致的自旋劈裂,并且具有特殊的晶格对称性配对的自旋-能谷锁定(CSVL)。这类自旋劈裂不依赖于净磁矩或者自旋轨道耦合作用,从而兼备铁磁和反铁磁体的优点以及较长的自旋弛豫时间等特点,而具备此类特殊劈裂的反铁磁体后续也被统称为交错磁体(altermagnet)。交错磁体的发现更入选了《Science》2024年度十大科学突破。

新闻
制造业的危与机: 科大发布2025年第二季度中国PMI预测
随着关税战升级,全球经济受压,为制造业带来极大的不确定性。香港科技大学(科大)利丰供应链研究院在最新发布的《中国制造业季度报告》指出,尽管在中美贸易冲突影响下,中国第二季度制造业生产预计将放缓,但中国制造商已做好充分准备应对挑战,并强调中国在全球供应链中扮演不可或缺的角色,难以轻易被取代。
根据报告显示,中国制造业于2025年第一季度呈现复苏趋势,采购经理人指数(PMI)自2月起持续处于50以上的扩张区间。然而,美国对中国商品加征145%额外关税(部分商品豁免)后,制造业面临重大挑战。在此情况下,研究团队预估此轮关税措施加上全球经济放缓,将对中国出口及制造业产出构成负面影响。尤其预计中国对美出口将出现显著下滑,2025年第二季度整体出口可能会呈现双位数跌幅。受此影响,中国工业生产增长料于第二季度明显放缓, PMI预跌破50荣枯线,进入收缩区间。
报告进一步指出,中小企业(SMEs)料将首当其冲受压,因为相较于大型企业,这类公司通常对出口贸易的依存度更高。尽管报告认为中国政府可能会于未来数月内加大针对性政策支持力度,但相信仍需一段时间,方能展现相关措施的实质成效。

新闻
从激光到电池:科大研发突破性单步激光打印技术 革新锂硫电池制造
由香港科技大学(科大)综合系统与设计学部助理教授李桂君领导的研究团队,成功开发出一种创新性的单步激光打印技术,可显著提升锂硫电池的制造效率。该技术通过纳秒级激光诱导转印工艺,将传统制造中耗时冗长的活性材料合成与正极制备步骤整合为一步完成,为可打印电化学储能器件的工业化生产开辟了全新路径。相关研究成果*已发表于国际顶级期刊《自然通讯Nature Communications》。
锂硫电池因其硫正极的高理论能量密度,有望取代现有的商用锂离子电池。为保证硫化物的快速转化,这些正极通常由活性材料、宿主材料(或催化剂)和导电材料组成。然而,宿主材料的制备和硫正极的组装往往涉及复杂、多步骤且高耗时的过程,需要在不同温度和条件下进行,这将引起工业量产中效率和成本方面的忧虑。
为了应对这些挑战,研究团队开发了一种创新的单步激光打印技术,用于快速制造集成化硫正极。在高通量激光脉冲辐照过程中,前驱体材料被激活,产生颗粒射流,其中包括原位合成的埃洛石基杂化纳米管(宿主材料)、硫化物(活性材料)和葡萄糖衍生的多孔碳(导电组分)。这些混合物被打印到碳纤维衬底上,形成集成化硫正极。值得注意的是,激光打印的硫正极在纽扣式和软包式锂硫电池中均表现出卓越的电化学性能。
李桂君教授表示:“传统离子电池的正极/负极制造过程通常包括活性材料的合成(有些情况下需要与宿主材料/催化剂复合)、复合浆料的制备以及正极/负极的组装。由于不同材料具有差异较大的物理特性,这些步骤通常需要在不同温度和条件下单独进行。因此,整个过程可能需要耗费数十小时甚至数天。”
因此,团队另辟蹊径提出了全新的解决方案。 李教授补充道:“我们新开发的激光诱导转印技术可将这些过程整合为一步,且物质转化速度可达到纳秒级。仅使用单束激光,打印速度就可达约2平方厘米每分钟。一个75×45平方毫米的硫正极可在20分钟内打印完成,并在组装成锂硫软包电池后,为小型屏幕供电数小时。”