新聞及香港科大故事
2025

新聞
破解硼雜環:科大化學家發現硼雜環新合成方法
硼雜環化合物是重要的結構支架,近年在催化劑、合成化學、材料科學和藥物開發等領域的應用日益廣泛。然而,目前的研究主要集中在三元、五元及六元硼雜環上,對四元硼雜環的探索仍然非常有限。由香港科技大學(科大)化學系全楊健教授和林振陽教授領導的研究團隊,與香港中文大學呂海榮教授合作,在發展高效的四元硼雜環合成方法上取得了突破性進展,令以往難以獲得的硼雜環亦得以輕易合成,預期將能實現更多實際應用。
硼雜環化合物作為重要的結構基元,在藥物化學與功能材料領域展現出獨特的應用價值。其中,五元和六元硼雜環體系已在生物活性分子與光電材料中得到廣泛應用。儘管四元硼雜環具有顯著的環張力,預期能帶來豐富的反應性,但由於缺乏高效且通用的合成方法,長久以來限制了對四元硼雜環性質和應用的研究。
此次研究發現了全新的硼雜環合成路徑,其關鍵在於研究團隊成功解鎖了硼碳雙自由基(BCDR)化學。通過光促進的能量轉移催化策略形成碳硼雙自由基中間體。這項研究的重要突破是首次在四元硼雜環中成功實現了穩定性和反應性的有效平衡,使以往難以獲得的其他硼雜環得以輕易合成,這些硼雜環有望在硼藥物和分子功能材料等領域獲得應用。
全教授補充:「更重要的是,應力性硼雜環的反應與穩定性平衡的概念和策略,不僅促進了硼雜環合成砌塊的發展,更將好奇心驅動的研究轉向以應用為導向的研究,從而吸引更多來自不同領域的研究人員。」
這項研究已於2025年4月發表於《自然化學(Nature Chemistry)》期刊。論文第一作者是科大化學系博士後研究員王欣謀博士,博士生張沛琪則進行了 DFT 計算;論文共同通訊作者為全教授、林教授和呂教授。

新聞
科大團隊開發新模型 提升山泥傾瀉預測準確度
香港科技大學(科大)工學院研究團隊成功研發了一種革命性的計算框架,深化了科學界對土壤、沙粒和藥物粉末等顆粒材料動力學的理解。此突破性模型能透過綜合分析水、空氣及粒子間的相互物理作用,準確預測山泥傾瀉,改善農業灌溉及石油抽取系統,並有助提升食物和藥物的製造流程。
預測顆粒材料動力的挑戰
固體顆粒材料(如:土壤、沙子,以及製藥和食品生產中使用的粉末)的流動,是支配許多自然環境與工業過程的基本機制。理解這些顆粒與周邊流體(如水、空氣)的互動關係,對預測土壤崩塌或流體滲漏等狀況至關重要。然而,現存模型在捕捉這些相互作用,尤其是當這些物質處於「不完全飽和狀態」,因而牽涉到毛細吸力、黏滯力等複雜的計算因素在內時,要精準預測這些狀況極為困難。
PUA-DEM革新顆粒模型範式
為應對這些挑戰,科大土木及環境工程學系的趙吉東教授及其團隊研發了「孔隙單元體 – 離散元模型」(簡稱PUA-DEM模型)。有別於傳統模型多採用過度簡化的單向流固耦合分析(如僅考慮流體對固體的單向影響等),PUA-DEM模型能綜合計算顆粒、空氣和水之間的物理交互動態,透過多向耦合分析,精準捕捉固體及流體的移動,並能準確模擬顆粒在不同飽和狀態 (從完全濕透至完全乾燥的情況)下,壓力釋放程度的變化。
基於基礎物理原理,這首創模型能精準預測流體和固體在交互作用下各種複雜狀況,在岩土工程、環境科學與工業製造等領域,均有巨大的應用潛力。
顆粒模型應用廣泛
研究團隊正尋求與政府及業界合作,期望應用此技術以助解決現實生活的不同挑戰。當中包括開發山泥傾瀉早期預警系統; 透過模擬根土保水能力的交互作用以完善灑水灌溉策略;以及透過多方流體預測系統以協助改進現時石油採集以及碳封存工序的效率等。除此以外,新技術亦有望革新藥物製造,透過更精準控制粉末的加工程序,使藥物生產更安全和更高效,並有助確保藥物劑量的一致性,從而提升療效及改善病人預後。在食品製造方面,新技術可望革新咖啡、糖,以及嬰兒配方奶粉等顆粒生產工序,改善其質地、溶解度以及保存穩定性等,亦有效減少耗能與浪費。

新聞
科大成立馮諾依曼研究院 領航人工智能創新
為響應香港特別行政區政府全力發展人工智能(AI)為關鍵產業的策略,香港科技大學(科大)今日正式成立馮諾依曼研究院(Von Neumann Institute),整合具身智能、生成式AI及先進超級運算等技術,推動跨學科協作,促進新質生產力,以迎接AI世代。
馮諾依曼研究院以著名電腦科學家、人稱「電腦之父」的約翰·馮·諾依曼命名,其開創的「馮諾伊曼架構」,對當今的AI演算法影響深遠。研究院將由計算機視覺與AI領域知名專家、科大計算機科學及工程學系講座教授兼獨角獸企業思謀集團創始人賈佳亞教授領導,憑藉科大在AI領域的堅實基礎,以及賈教授廣泛的產業網絡,研究院將致力於構建完整的AI生態系統,加強產學研合作,並通過中學拓展計劃,培育新一代AI人才。
Vonnex機械人展現AI突破
出席研究院開幕禮的主禮嘉賓包括香港特別行政區財政司司長陳茂波、匈牙利駐香港總領事柯泰安 (Dr. Pál Kertész) 、香港投資管理有限公司(港投公司)行政總裁陳家齊,科大校董會主席沈向洋教授、校長葉玉如教授以及首席副校長郭毅可教授等。其中,賈教授團隊研發的AI機械人Vonnex更參與揭幕儀式,展現了其流暢的操作與多模態感知系統,並能同時處理視覺、觸覺和聲音等資訊,彰顯機械人技術的潛能。
財政司司長陳茂波在致開幕辭中表示:「特區政府相信人工智能蘊藏巨大的潛力。我們的目標是通過『AI+』策略,將AI融入各行各業。馮諾依曼研究院匯聚了科大、思謀集團及港投公司等多方人才與資源,集合卓越的學術水平、堅實的基礎研究、豐富的業界經驗,更擁有龐大的企業與投資者網絡。我們期望研究院能成為開拓AI應用場景與推動研究成果商業化的平台,為香港不斷發展的創科生態系統以及人工智能領域的進步作出貢獻。」

新聞
HKUST Community Benefits from Award-Winning AIoT Project to Estimate Queue Status and Occupancy(只供英文版本)
HKUST’s Engineering Commons, opened in 2013, has been the School of Engineering’s “family room” that enhances interaction of the engineering community and enables the display of top-notch research of its faculty members. Located at a key intersection of the campus, the Engineering Commons was renovated in 2024 after being used for more than a decade. As the Commons officially reopened in October 2024, it features an array of new research applications that are most relevant to campus life, including AIoT sensing research led by Prof. Gary CHAN Shueng-Han of the Department of Computer Science and Engineering.

新聞
從「層壓板」獲取靈感:科大與理大研究團隊首創「層壓」界面結構 推進鈣鈦礦光伏技術
香港科技大學(科大)與香港理工大學(理大)的合作研究團隊首創一種層壓形貌的界面微結構,可進一步提高反式鈣鈦礦太陽能電池器件的穩定性和光電轉換效率。
鈣鈦礦太陽能電池因高效率、低成本以及器件美學方面的獨特優勢,在電網電力、便攜電源和太空光伏等應用場景均展示出取代傳統硅電池的巨大潛力。鈣鈦礦太陽能電池的基本器件結構分為正式與反式兩種。其中反式器件因各層電子材料比正式器件較為穩定,從而展現出更好的應用前景。儘管如此,反式器件仍然存在較多的界面科學問題,特別是富勒烯基電子傳輸層與鈣鈦礦表面形成的界面處缺陷富集,是影響器件性能與穩定性的重要因素。
科大化學及生物工程學系副教授與能源研究院副院長周圓圓教授團隊致力於從獨特的結構視角開展基礎科學導向的鈣鈦礦光電器件研究。透過與理大應用物理學系的蔡嵩驊教授團隊的合作,團隊發現通過在鈣鈦礦薄膜表面空間均勻地形成一種「分子鈍化層-富勒烯衍生物層-二維鈣鈦礦層」的類「三合板」的層壓結構,可有效降低界面缺陷密度、改善能級匹配度,從而提高了鈣鈦礦電池的光電轉換效率,並大幅度提高界面在濕熱環境以及光照運行下的耐久性。
論文的共同第一作者、科大博士後研究員郭鵬飛博士說:「我們將復合材料概念導入到光電器件的界面設計,這使得新型界面中每層產生協同效應,帶來了傳統界面工程所無法實現的效果。」
該研究工作的主要通訊作者周圓圓教授補充道:「鈣鈦礦是一種軟晶格材料。我們可在這類材料裡創造傳統材料難以實現的微結構特徵。我們正在盡一切努力來理解這些微結構在納米乃至原子尺度的形成與作用機制,開展基礎理解導向的器件創新。」

新聞
磁學新時代:科大最新研究為自旋電子學和谷電子學應用帶來新方向
近年來國際科研界廣泛關注交錯磁體(Altermagnets),研究其如何不依賴淨磁矩或自旋軌道耦合作用(SOC)而實現自旋劈裂。香港科技大學(科大)物理系劉軍偉教授團隊與其他研究團隊,最近在《Nature Physics》*上發表最新研究成果,揭示了首次在實驗中測量到具有二維層狀特性的室溫交錯磁體,並驗證了劉教授於2021年發表於《Nature Communications》的理論預測。長久以來,如何實現以及進一步控制自旋極化態,從而存儲和調控資訊,是自旋電子學的一個重要問題。傳統方式是通過自旋與軌道、自旋與局域磁矩的相互作用,實現自旋極化,前者對應著自旋軌道耦合效應產生的自旋劈裂,如Rashba-Dresselhaus效應,而後者對應著鐵磁中的Zeeman劈裂。劉教授亦與多個國際研究團隊相繼在理論上提出了一種新的自旋劈裂理論——在旋轉、鏡面等晶體對稱性聯繫不同磁子格的反鐵磁中,會產生來自於反鐵磁交換相互作用導致的自旋劈裂,並且具有特殊的晶格對稱性配對的自旋-能谷鎖定(CSVL)。這類自旋劈裂不依賴於淨磁矩或者自旋軌道耦合作用,從而兼備鐵磁和反鐵磁體的優點以及較長的自旋弛豫時間等特點,而具備此類特殊劈裂的反鐵磁體後續也被統稱為交錯磁體(altermagnet)。交錯磁體的發現更入選了《Science》2024年度十大科學突破。

新聞
製造業的危與機: 科大發布2025年第二季度中國PMI預測
隨著關稅戰升級,全球經濟受壓,為製造業帶來極大的不確定性。香港科技大學(科大)利豐供應鏈研究院在最新發布的《中國製造業季度報告》指出,儘管在中美貿易衝突影響下,中國第二季度製造業生產預計將放緩,但中國製造商已做好充分準備應對挑戰,並強調中國在全球供應鏈中扮演不可或缺的角色,難以輕易被取代。
根據報告顯示,中國製造業於2025年第一季度呈現復甦趨勢,採購經理人指數(PMI)自2月起持續處於50以上的擴張區間。然而,美國對中國商品加徵145%額外關稅(部分商品豁免)後,製造業面臨重大挑戰。在此情況下,研究團隊預估此輪關稅措施加上全球經濟放緩,將對中國出口及製造業產出構成負面影響。尤其預計中國對美出口將出現顯著下滑,2025年第二季度整體出口可能會呈現雙位數跌幅。受此影響,中國工業生產增長料於第二季度明顯放緩, PMI預跌破50榮枯線,進入收縮區間。
報告進一步指出,中小企業(SMEs)預料將首當其衝受壓,因為相較於大型企業,這類公司通常對出口貿易的依存度更高。儘管報告認為中國政府可能會於未來數月內加大針對性政策支持力度,但相信仍需一段時間,方能展現相關措施的實質成效。

新聞
從激光到電池:科大研發突破性單步激光打印技術 革新鋰硫電池製造
由香港科技大學(科大)綜合系統與設計學部助理教授李桂君領導的研究團隊,成功開發出一種創新性的單步激光打印技術,可顯著提升鋰硫電池的製造效率。該技術通過納秒級激光誘導轉印工藝,將傳統製造中耗時冗長的活性材料合成與正極製備步驟整合為一步完成,為可打印電化學儲能器件的工業化生產開闢了全新路徑。相關研究成果已發表於國際頂級期刊《自然通訊Nature Communications》。
鋰硫電池因其硫正極的高理論能量密度,有望取代現有的商用鋰離子電池。為保證硫化物的快速轉化,這些正極通常由活性材料、宿主材料(或催化劑)和導電材料組成。然而,宿主材料的製備和硫正極的組裝往往涉及複雜、多步驟且高耗時的過程,需要在不同溫度和條件下進行,這將引起工業量產中效率和成本方面的憂慮。
為了應對這些挑戰,研究團隊開發了一種創新的單步激光打印技術,用於快速製造集成化硫正極。在高通量激光脈衝輻照過程中,前驅體材料被激活,產生顆粒射流,其中包括原位合成的埃洛石基雜化納米管(宿主材料)、硫化物(活性材料)和葡萄糖衍生的多孔碳(導電組分)。這些混合物被打印到碳纖維襯底上,形成集成化硫正極。值得注意的是,激光打印的硫正極在紐扣式和軟包式鋰硫電池中均表現出卓越的電化學性能。
李桂君教授表示:「傳統離子電池的正極/負極製造過程通常包括活性材料的合成(有些情況下需要與宿主材料/催化劑複合)、複合漿料的製備以及正極/負極的組裝。 由於不同材料具有差異較大的物理特性,這些步驟通常需要在不同溫度和條件下單獨進行。因此,整個過程可能需要耗費數十小時甚至數天。」
因此,團隊另闢蹊徑提出了全新的解決方案。李教授補充道:「我們新開發的激光誘導轉印技術可將這些過程整合為一步,且物質轉化速度可達到納秒級。僅使用單束激光,打印速度就可達約2平方厘米每分鐘。 一個75×45平方毫米的硫正極可在20分鐘內打印完成,並在組裝成鋰硫軟包電池後,為小型螢幕供電數小時。」